

BÖKER und PARTNER · Cloppenburger Str. 4a · 26135 Oldenburg

rasteder erdbaulabor GmbH & Co. KG

Bgm.-Brötje-Straße 12

26180 Rastede

PARTNERSCHAFT

Uwe Böker Dr. Dieter Cordes Dr. Michael Bachmann Register Hannover Nr. 67

VERANTWORTLICHE MITARBEITER

Sandra Benekendorff

KONTAKT

Cloppenburger Str. 4a 26135 Oldenburg

Tel. 0441-9601061 Fax. 0441-9601059

box@boekerundpartner.de www.boekerundpartner.de USt-IdNr. DE209200388

dc/25P100 Feuerwehr Bockhorn

Oldenburg, den 14.07.2025

Oldenburger Straße, Ganderkesee BPlan Nr. 278 FW Ganderkesee Orientierende abfallrechtliche Untersuchungen Stellungnahme

Sehr geehrte Damen und Herren,

im Zuge des oben genannten Bauvorhabens wurden Bohrsondierungen durchgeführt. (Anlage 1: Lageplan und Bohrprofile). Die abfallrechtlichen Analysen wurden in den Laboratorien Dr. Döring, Bremen, durchgeführt. Es wurden nachfolgende Ergebnisse erzielt (siehe auch Anlage 2: Laborergebnisse).

BBodSchV – Oberboden

Es wurden zwei Mischproben aus dem Oberboden untersucht.

Tabelle 1: Vorsorgewerte (hier: Sand; TOC: 0,96 – 1,1 Masse-%; pH: 5,6-5,7)

Dayayaastay	Einheit	MP 1 aus BS 1	MP 2 aus BS 6	Vorsorgewerte				
Parameter		- BS 5	– BS 10	Sand	Lehm/Schluff	Ton		
Arsen	mg/kg	1,8	1,5	10	20	20		
Blei	mg/kg	13	14	40	70	100		
Cadmium	mg/kg	0,1	< 0,1	0,4	1	1,5		
Chrom, ges.	mg/kg	9,2	8,7	30	60	100		
Kupfer	mg/kg	5,1	6,7	20	40	60		
Nickel	mg/kg	2,7	1,6	15	50	70		
Quecksilber	mg/kg	< 0,1	< 0,1	0,2	0,3	0,3		
Thallium	mg/kg	< 0,1	< 0,1	1	1	1		
Zink	mg/kg	18	13	60	150	200		

				TOC ≤ 4 %	TOC > 4 %
PCB ₇	mg/kg	n.n.	n.n.	0,05	0,1
Benzo(a)pyren	mg/kg	0,024	0,011	0,3	0,5
PAK ₁₆	mg/kg	0,256	0,129	3	5

Tabelle 2 : Ergebnisse und relevante Belastungen

Probe	Aus BS	Tiefe [m]	Beschreibung	Belastung	Vorsorgewerte BBodSchV
MP 1	BS 1 – BS 5	0,00 – 0,45	Oberboden, sandig	-	eingehalten
MP 2	BS 6 – BS 10	0,00 - 0,40	Oberboden, sandig	-	eingehalten

Die Vorsorgewerte werden eingehalten. Das Material kann z.B. als Auftragsboden verwertet werden.

EBV - Boden

Aus den Bohrsondierungen wurden drei Mischproben aus dem Unterboden erstellt und gemäß EBV untersucht.

Tabelle 3: Abfallrechtliche Zuordnung nach EBV – Tabelle 3, Spalte 6, Feststoff (für Sand)

Parameter im Feststoff	Einheit	MP 3	MP 4	MP 5	BM-0	BM-0*	BM- F0*	BM-F1	BM-F2	BM-F3
Mineral. FB	Vol%	< 10	< 10	< 10	10	50	50	50	50	50
тос	M%	0,38	< 0,1	< 0,1	1	1	5	5	5	5
Arsen	mg/kg	< 1,0	3,3	3,1	10	20	40	40	40	150
Blei	mg/kg	4,5	7,3	7,7	40	140	140	140	140	700
Cadmium	mg/kg	< 0,1	< 0,1	< 0,1	0,4	1	2	2	2	10
Chrom ges.	mg/kg	4,1	10	9,8	30	120	120	120	120	600
Kupfer	mg/kg	3,1	6,9	7,8	20	80	80	80	80	320
Nickel	mg/kg	2,7	9,4	9,9	15	100	100	100	100	350
Zink	mg/kg	9,7	1 <i>7</i>	17	60	300	300	300	300	1.200
Quecksilber	mg/kg	< 0,1	< 0,1	< 0,1	0,5	0,6	0,6	0,6	0,6	5
Thallium	mg/kg	< 0,1	< 0,1	0,1	0,5	1,0	2	2	2	7
KW C10-C22	mg/kg	< 5	< 5	< 5	-	300	300	300	300	1.000
KW C10-C40	mg/kg	< 5	7	< 5	-	600	600	600	600	2.000
EOX	mg/kg	0,5	< 0,1	0,1	1	1	3	3	3	10
PCB ₆ +PCB-118	mg/kg	n.n.	n.n.	n.n.	0,05	0,1	0,15	0,15	0,15	0,5
PAK ₁₆	mg/kg	0,013	n.n.	n.n.	3	6	6	6	9	30

Parameter im Feststoff	Einheit	MP 3	MP 4	MP 5	ВМ-О	BM-0*	BM- F0*	BM-F1	BM-F2	BM-F3
Benzo(a)pyren	mg/kg	< 0,001	< 0,001	< 0,001	0,3	-	-	-	-	-

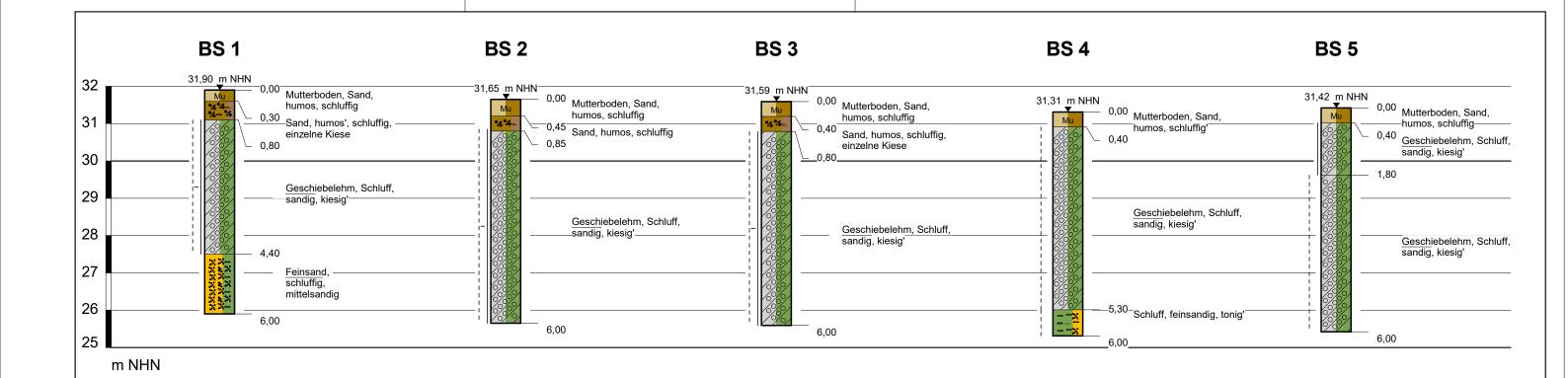
Die Eluatanalysen ergaben nachfolgende Ergebnisse.

Tabelle 4: Abfallrechtliche Zuordnung nach EBV – Tabelle 3, Spalte 6, 2:1 Eluat (mit TOC < 0,5%)

Parameter im 2:1 Eluat	Einheit	MP 3	MP 4	MP 5	BM-0	BM-0*	BM-F0*	BM-F1	BM-F2	BM-F3
рН		6,7	6,1	5,7			6,5-9,5	6,5-9,5	6,5-9,5	5,5-12
Leitfähigkeit	μS/cm	36	36	41	-	350	350	500	500	2.000
Arsen	μg/l	< 2,0	< 2,0	< 2,0	-	8	12	20	85	100
Blei	μg/l	< 0,2	< 0,2	< 0,2	-	23	35	90	250	470
Cadmium	μg/l	< 0,2	< 0,2	< 0,2	-	2	3,0	3,0	10	15
Chrom gesamt	μg/l	0,3	< 0,3	< 0,3		10	15	150	290	530
Kupfer	μg/l	5,2	< 2,0	< 2,0	-	20	30	110	170	320
Nickel	μg/l	1,3	1,8	1,7	-	20	30	30	150	280
Zink	μg/l	10	< 2,0	< 2,0	-	100	150	160	840	1.600
Quecksilber	μg/l	< 0,1	< 0,1	< 0,1	-	0,1	-	-	-	-
Thallium	μg/l	< 0,2	< 0,2	< 0,2	-	0,2	-	-	-	-
Sulfat	mg/l	3,2	6,3	7,6	250	250	250	450	450	1.000
PAK ₁₅	μg/l	n.n.	n.n.	n.n.	-	0,2	0,3	1,5	3,8	20
Naphth./Methn.	μg/l	< 0,1	< 0,1	< 0,1	-	2	-	-	-	-
PCB ₆ +PCB-118	μg/l	n.n.	n.n.	n.n.	-	0,01	0,02	0,02	0,02	0,04
EBV-Zuordnung		BM-0	BM-0	BM-0						
Abfallschlüsseln	ummer	17 05 04	17 05 04	17 05 04						

Tabelle 5 : Ergebnisse und relevante Belastungen

Probe	Aus BS	Tiefe [m]	Beschreibung	"Belastung"	EBV
MP 3	1, 2, 3, 7, 8, 10	0,30 – 1,00	Sand, humos	-	BM-0
MP 4	1 - 5	0,40 – 6,00	Geschiebelehm	-	BM-0
MP 5	6 - 10	0,40 – 6,00	Geschiebelehm	-	BM-0


Mit freundlichen Grüßen

Dr. Dieter Cordes

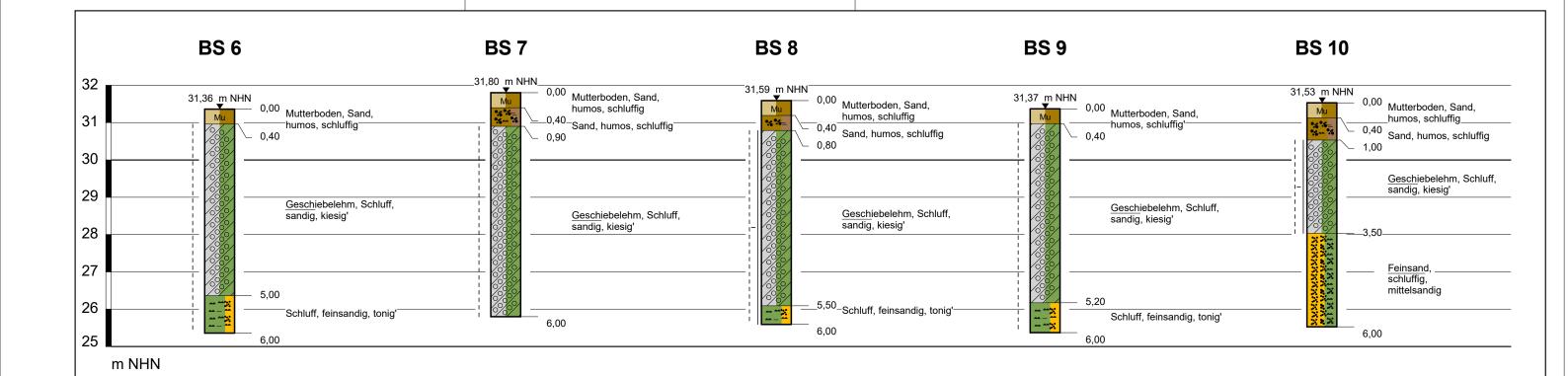
BÖKER UND PARTNER

Anlage 1 Lageplan und Bohrprofile der Bohrsondierungen (RE)

Anlage 2 Laborergebnisse (Dr. Döring)

Messpunkt	Rechtswert	Hochwert	Höhe (m NHN)
BS 1	32 469 159,0	5 877 542,2	31,90
BS 2	32 469 220,2	5 877 552,2	31,65
BS 3	32 469 242,3	5 877 554,3	31,44
BS 4	32 469 262,1	5 877 555,5	31,31
BS 5	32 469 231,1	5 877 573,0	31,42
BS 6	32 469 251,5	5 877 573,9	31,36
BS 7	32 469 170,8	5 877 591,3	31,80
BS 8	32 469 202,5	5 877 601,1	31,59
BS 9	32 469 235,4	5 877 609,3	31,37
BS10	32 469 205,5	5 877 626,0	31,53

Koordinatensystem: ETRS89 / UTM zone 32N (zE-N)


Höhenbezugssystem: DHHN2016

0 10 20 30 40 50 m

rasteder erdbaulabor GmbH & Co. KG Ingenieurbüro für Geotechnik Bürgermeister-Brötje-Str. 12, 26180 Rastede 04402 - 93 98 81 / info@re-einenkel.de

Bauherr:	Projekt-Nr. 25.253				
Projekt:	Lage	an Nr. 278 - F plan und Bohrpro enburger Stra	ofile 1-5		Anlage-Nr. 1.1
Maßstab		Höhen-Maßstab			Datum
		1 : 100			04.06.2025

Messpunkt	Rechtswert	Hochwert	Höhe (m NHN)
BS 1	32 469 159,0	5 877 542,2	31,90
BS 2	32 469 220,2	5 877 552,2	31,65
BS 3	32 469 242,3	5 877 554,3	31,44
BS 4	32 469 262,1	5 877 555,5	31,31
BS 5	32 469 231,1	5 877 573,0	31,42
BS 6	32 469 251,5	5 877 573,9	31,36
BS 7	32 469 170,8	5 877 591,3	31,80
BS 8	32 469 202,5	5 877 601,1	31,59
BS 9	32 469 235,4	5 877 609,3	31,37
BS10	32 469 205,5	5 877 626,0	31,53

Koordinatensystem: ETRS89 / UTM zone 32N (zE-N)

Höhenbezugssystem: DHHN2016

0 10 20 30 40 50 m

rasteder erdbaulabor GmbH & Co. KG Ingenieurbüro für Geotechnik Bürgermeister-Brötje-Str. 12, 26180 Rastede 04402 - 93 98 81 / info@re-einenkel.de

			•			
Bauherr:	Bauherr: Gemeinde Ganderkesee Mühlenstraße in 27777 Ganderkesee					
Projekt:	Lage	an Nr. 278 - F plan und Bohrpr enburger Stra	ofile 6-10			Anlage-Nr. 1.2
Maßstab		Höhen-Maßstab				Datum
		1 · 100				04.06.2025

Laboratorien Dr. Döring Haferwende 21 28357 Bremen

Rasteder Erdbaulabor GmbH & Co. KG Herr Einenkel Bürgermeister-Brötje-Str. 12

26180 RASTEDE

11. Juli 2025

PRÜFBERICHT 250625012

Auftragsnr. Auftraggeber: 25.253

Gem. Ganderkesee, Feuerwehr Bockhorn, BPlan 278 Projektbezeichnung:

Probenahme: durch Auftraggeber

Probentransport: durch Laboratorien Dr. Döring GmbH am 24.06.2025

Probeneingang: 25.06.2025

Prüfzeitraum: 25.06.2025 - 11.07.2025 25142164 - 25142165 Probennummer:

Probenmaterial: Boden PE-Dose Verpackung:

Bemerkungen:

Sonstiges: Der Messfehler dieser Prüfungen befindet sich im üblichen Rahmen. Näheres teilen wir Ihnen auf Anfrage gerne mit.

Listen zu den Messunsicherheiten sind auf der Homepage einsehbar. Die Prüfergebnisse beziehen sich ausschließlich Listen zu den wiesstnisicherheiten sind auf der nöhriepage einstenbar. Die Prüergebnisse beziehen sich ausschieblich auf die angegebenen Prüfgegenstände. Angaben zur Fremdvergabe und Akkreditierung unter Messverfahren. Eine auszugsweise Vervielfältigung dieses Prüfberichts bedarf der schriftlichen Genehmigung durch die Laboratorien Dr. Döring GmbH. Eventuell ausgewiesenen Summen einzelner Parameter werden automatisch berechnet. Die Bildung der Summen erfolgt rein numerisch und die hierbei angegebenen Stellen entsprechen nicht der Signifikanz. Bestimmungsgrenzen können matrix- / einwaagebedingt variieren.

Analysenbefunde: Seite 3 Messverfahren: Seite 2

Qualitätskontrolle:

Dr. Dirk Schlüter (Projektleiter)

Dr. Joachim Döring (Geschäftsführer)

Probenvorbereitung: DIN 19747: 2009-07 1)

Messverfahren: Trockenmasse DIN EN 14346: 2007-03 1) TOC (F) DIN EN 15936: 2022-09 1)

Aufschluss DIN EN 13657: 2003-01 1)

Arsen DIN EN ISO 17294-2 (E29): 2017-01 1) Blei DIN EN ISO 17294-2 (E29): 2017-01 1) Cadmium DIN EN ISO 17294-2 (E29): 2017-01 1) DIN EN ISO 17294-2 (E29): 2017-01 1) Chrom DIN EN ISO 17294-2 (E29): 2017-01 1) Kupfer Nickel DIN EN ISO 17294-2 (E29): 2017-01 1) Quecksilber DIN EN ISO 12846 (E12): 2012-08 1) DIN EN ISO 17294-2 (E29): 2017-01 1) Thallium Zink DIN EN ISO 17294-2 (E29): 2017-01 1)

PCB (F) DIN EN 15308: 2016-12 1) PAK (F) DIN ISO 18287: 2006-05 1) pH-Wert (F) DIN EN ISO 10390: 2022-08 1)

stresemannstraße 342

22761 hamburg

¹⁾ Laboratorien Dr. Döring GmbH, durch die DAkkS nach DIN EN ISO/IEC 17025:2018 akkreditiertes Prüflabor. Die Akkreditierung gilt nur für den in der Urkundenanlage D-PL-13462-01-00 aufgeführten Akkreditierungsumfang.

Labornummer		25142164	25142165	
Probenbezeichnung		MP 1 ausw BS	MP 2 aus BS 6	
		1 - BS 5	- BS 10	
Entnahmetiefe		0,00 - 0,45 m	0,00 - 0,40 m	
Parameter	Dimension			
Trockenmasse	%	88,5	92,0	
TOC	%	1,1	0,96	
pH-Wert bei 20 °C	-	5,7	5,6	
(CaCl ₂ Auszug)		O ,.	0,0	
A	ma/ka TC	4.0	4 =	
Arsen	mg/kg TS mg/kg TS	1,8	1,5	
Blei	mg/kg TS	13	14	
Cadmium	mg/kg TS	0,1	< 0,1	
Chrom	mg/kg TS	9,2	8,7	
Kupfer Nickel	mg/kg TS	5,1	6,7	
Quecksilber	mg/kg TS	2,7	1,6	
Thallium	mg/kg TS	< 0,1	< 0,1	
Zink	mg/kg TS	< 0,1 18	< 0,1 13	
ZIIIK	mg/itg 10	10	13	
PCB 28	mg/kg TS	< 0,001	< 0,001	
PCB 52	mg/kg TS	< 0,001	< 0,001	
PCB 101	mg/kg TS	< 0,001	< 0,001	
PCB 118	mg/kg TS	< 0,001	< 0,001	
PCB 138	mg/kg TS	< 0,001	< 0,001	
PCB 153	mg/kg TS	< 0,001	< 0,001	
PCB 180	mg/kg TS	< 0,001	< 0,001	
Summe PCB (7 Kong.)	mg/kg TS	n.n.	n.n.	
, , ,				
Naphthalin	mg/kg TS	< 0,001	< 0,001	
Acenaphthylen	mg/kg TS	< 0,001	< 0,001	
Acenaphthen	mg/kg TS	0,001	< 0,001	
Fluoren	mg/kg TS	< 0,001	< 0,001	
Phenanthren	mg/kg TS	0,011	0,004	
Anthracen	mg/kg TS	0,001	< 0,001	
Fluoranthen	mg/kg TS	0,035	0,015	
Pyren	mg/kg TS	0,027	0,012	
Benzo(a)anthracen	mg/kg TS	0,027	0,014	
Chrysen	mg/kg TS	0,020	0,005	
Benzo(b)fluoranthen	mg/kg TS	0,058	0,036	
Benzo(k)fluoranthen	mg/kg TS	0,013	0,008	
Benzo(a)pyren	mg/kg TS	0,024	0,011	
Indeno(1,2,3-cd)pyren	mg/kg TS mg/kg TS	0,019	0,011	
Dibenzo(a,h)anthracen	mg/kg TS	0,003	0,002	
Benzo(g,h,i)perylen Summe PAK (EPA)	mg/kg TS	0,017 0,256	0,011 0,129	
Julillie PAR (EPA)	9,9 10	0,250	0,129	
		<u> </u>		

freboldstraße 16

30455 hannover

22761 hamburg

stresemannstraße 342

Laboratorien Dr. Döring Haferwende 21 28357 Bremen

Rasteder Erdbaulabor GmbH & Co. KG Herr Einenkel Bürgermeister-Brötje-Str. 12

26180 RASTEDE

11. Juli 2025

PRÜFBERICHT 250625013

Auftragsnr. Auftraggeber: 25.253

Gem. Ganderkesee, Feuerwehr Bockhorn, BPlan 278 Projektbezeichnung:

Probenahme: durch Auftraggeber

Probentransport: durch Laboratorien Dr. Döring GmbH am 24.06.2025

Probeneingang: 25.06.2025

Prüfzeitraum: 25.06.2025 - 11.07.2025 Probennummer: 25142166 - 25142168

Probenmaterial: Boden PE-Dose Verpackung:

Bemerkungen:

Sonstiges: Der Messfehler dieser Prüfungen befindet sich im üblichen Rahmen. Näheres teilen wir Ihnen auf Anfrage gerne mit.

Listen zu den Messunsicherheiten sind auf der Homepage einsehbar. Die Prüfergebnisse beziehen sich ausschließlich Listen zu den wiesstnisicherheiten sind auf der nöhriepage einstenbar. Die Prüergebnisse beziehen sich ausschieblich auf die angegebenen Prüfgegenstände. Angaben zur Fremdvergabe und Akkreditierung unter Messverfahren. Eine auszugsweise Vervielfältigung dieses Prüfberichts bedarf der schriftlichen Genehmigung durch die Laboratorien Dr. Döring GmbH. Eventuell ausgewiesenen Summen einzelner Parameter werden automatisch berechnet. Die Bildung der Summen erfolgt rein numerisch und die hierbei angegebenen Stellen entsprechen nicht der Signifikanz. Bestimmungsgrenzen können matrix- / einwaagebedingt variieren.

Analysenbefunde: Seite 3 - 4 Seite 2 Messverfahren:

Qualitätskontrolle:

Dr. Dirk Schlüter (Projektleiter)

Dr. Joachim Döring (Geschäftsführer)

Probenvorbereitung: DIN 19747: 2009-07 ¹⁾

Messverfahren: Trockenmasse DIN EN 14346: 2007-03 ¹) TOC (F) DIN EN 15936: 2022-09 ¹)

Kohlenwasserstoffe (GC;F) DIN EN 14039: 2005-1: i.V. mit LAGA

KW/04: 2019-04 ¹⁾

EOX (F) DIN 38414-17 (S17): 2017-01 1) Aufschluss DIN EN 13657: 2003-01 1)

Arsen DIN EN ISO 17294-2 (E29): 2017-01 1) Blei DIN EN ISO 17294-2 (E29): 2017-01 1) Cadmium DIN EN ISO 17294-2 (E29): 2017-01 1) DIN EN ISO 17294-2 (E29): 2017-01 1) Chrom DIN EN ISO 17294-2 (E29): 2017-01 1) Kupfer DIN EN ISO 17294-2 (E29): 2017-01 1) Nickel DIN EN ISO 12846 (E12): 2012-08 1) Quecksilber DIN EN ISO 17294-2 (E29): 2017-01 1) **Thallium** Zink DIN EN ISO 17294-2 (E29): 2017-01 1)

PCB (F) DIN EN 15308: 2016-12 1)
PAK (F) DIN ISO 18287: 2006-05 1)
Eluat DIN 19529: 2023-07 1)

el. Leitfähigkeit (E) DIN EN 27888 (C8): 1993-11 1)

Sulfat (E) DIN EN ISO 10304-1 (D20): 2009-07 1)

PCB (È) DIN 38407-37: 2013-11 1) PAK (E) DIN 38407-F 39: 2011-09 1) Methylnaphthaline DIN 38407-F 39: 2011-09 1) pH-Wert (E) DIN EN ISO 10523: 2012-04 1)

22761 hamburg

Seite 2 von 4

¹⁾ Laboratorien Dr. Döring GmbH, durch die DAkkS nach DIN EN ISO/IEC 17025:2018 akkreditiertes Prüflabor. Die Akkreditierung gilt nur für den in der Urkundenanlage D-PL-13462-01-00 aufgeführten Akkreditierungsumfang

Labornummer		25142166	25142167	25142168	
Probenbezeichnung		MP 3 aus	MP 4 aus	MP 5 aus	
1 Toberibezeichhung		BS 1, 2, 3, 7,		BS 6 - BS 10	
		8, 10	DO 1 - DO 3	DO 0 - DO 10	
Parameter	Dimension				
Trockenmasse	%	94,0	91,9	89,1	
TOC	%	0,38	< 0,1	< 0,1	
Kohlenwasserstoffe, n-C ₁₀₋₂₂	mg/kg TS	< 5	< 5	< 5	
Kohlenwasserstoffe, n-C ₁₀₋₄₀	mg/kg TS	< 5	7	< 5	
EOX	mg/kg TS	0,5	< 0,1	0,1	
		,	,	,	
Arsen	mg/kg TS	< 1,0	3,3	3,1	
Blei	mg/kg TS	4,5	7,3	7,7	
Cadmium	mg/kg TS	< 0,1	< 0,1	< 0,1	
Chrom	mg/kg TS	4,1	10	9,8	
Kupfer	mg/kg TS	3,1	6,9	7,8	
Nickel	mg/kg TS	2,7	9,4	9,9	
Quecksilber	mg/kg TS	< 0,1	< 0,1	< 0,1	
Thallium	mg/kg TS	< 0,1	< 0,1	0,1	
Zink	mg/kg TS	9,7	17	17	
PCB 28	mg/kg TS	< 0,001	< 0,001	< 0,001	
PCB 52	mg/kg TS	< 0,001	< 0,001	< 0,001	
PCB 101	mg/kg TS	< 0,001	< 0,001	< 0,001	
PCB 118	mg/kg TS	< 0,001	< 0,001	< 0,001	
PCB 138	mg/kg TS	< 0,001	< 0,001	< 0,001	
PCB 153	mg/kg TS	< 0,001	< 0,001	< 0,001	
PCB 180	mg/kg TS	< 0,001	< 0,001	< 0,001	
Summe PCB (7 Kong.)	mg/kg TS	n.n.	n.n.	n.n.	
	# TO				
Naphthalin	mg/kg TS	< 0,001	< 0,001	< 0,001	
Acenaphthylen	mg/kg TS	< 0,001	< 0,001	< 0,001	
Acenaphthen	mg/kg TS	< 0,001	< 0,001	< 0,001	
Fluoren	mg/kg TS	< 0,001	< 0,001	< 0,001	
Phenanthren	mg/kg TS	< 0,001	< 0,001	< 0,001	
Anthracen	mg/kg TS	< 0,001	< 0,001	< 0,001	
Fluoranthen	mg/kg TS	0,003	< 0,001	< 0,001	
Pyren	mg/kg TS	0,002	< 0,001	< 0,001	
Benzo(a)anthracen	mg/kg TS mg/kg TS	0,003	< 0,001	< 0,001	
Chrysen		0,001	< 0,001	< 0,001	
Benzo(b)fluoranthen	mg/kg TS	0,004	< 0,001	< 0,001	
Benzo(k)fluoranthen	mg/kg TS mg/kg TS	< 0,001	< 0,001	< 0,001	
Benzo(a)pyren	mg/kg TS	< 0,001	< 0,001	< 0,001	
Indeno(1,2,3-cd)pyren	mg/kg TS	< 0,001	< 0,001	< 0,001	
Dibenzo(a,h)anthracen	mg/kg TS	< 0,001	< 0,001	< 0,001	
Benzo(g,h,i)perylen	mg/kg TS	< 0,001	< 0,001	< 0,001	
Summe PAK	mg/kg 13	0,013	n.n.	n.n.	

Labornummer		25142166	25142167	25142168	
Probenbezeichnung		MP 3 aus BS 1, 2, 3, 7, 8, 10	MP 4 aus BS 1 - BS 5	MP 5 aus BS 6 - BS 10	
Parameter	Dimension	2:1 ÉLUAT	2:1 ELUAT	2:1 ELUAT	
pH-Wert bei 20 °C el. Leitfähigkeit bei 25°C	- μS/cm	6,7 36	6,1 36	5,7 41	
Sulfat	mg/L	3,2	6,3	7,6	
Arsen Blei Cadmium Chrom Kupfer Nickel Quecksilber Thallium Zink	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	< 2,0 < 0,2 < 0,2 0,3 5,2 1,3 < 0,1 < 0,2	< 2,0 < 0,2 < 0,2 < 0,3 < 2,0 1,8 < 0,1 < 0,2 < 2,0	< 2,0 < 0,2 < 0,2 < 0,3 < 2,0 1,7 < 0,1 < 0,2 < 2,0	
PCB 28 PCB 52 PCB 101 PCB 118 PCB 138 PCB 153 PCB 180 Summe PCB (7 Kong.)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	< 0,01 < 0,01 < 0,01 < 0,01 < 0,01 < 0,01 < 0,01 n.n.	< 0,01 < 0,01 < 0,01 < 0,01 < 0,01 < 0,01 < 0,01 n.n.	< 0,01 < 0,01 < 0,01 < 0,01 < 0,01 < 0,01 < 0,01 n.n.	
Acenaphthylen Acenaphthen Fluoren Phenanthren Anthracen Fluoranthen Pyren Benzo(a)anthracen Chrysen Benzo(b)fluoranthen Benzo(k)fluoranthen Benzo(a)pyren Indeno(1,2,3-cd)pyren Dibenzo(a,h)anthracen Benzo(g,h,i)perylen Summe PAK ohne Naphthalin	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	< 0,1 < 0,1 < 0,1 < 0,1 < 0,01 < 0,01 < 0,05 < 0,05 < 0,05 < 0,01 < 0,01 < 0,01 < 0,01 < 0,01 < 0,01	< 0,1 < 0,1 < 0,1 < 0,1 < 0,01 < 0,05 < 0,05 < 0,05 < 0,01 < 0,01 < 0,01 < 0,01 < 0,01 < 0,01 n.n.	< 0,1 < 0,1 < 0,1 < 0,1 < 0,01 < 0,05 < 0,05 < 0,05 < 0,01 < 0,01 < 0,01 < 0,01 < 0,01 < 0,01 < 0,01	
Naphthalin und Methylnaphthaline, gesamt	μg/L	< 0,1	< 0,1	< 0,1	

stresemannstraße 342

freboldstraße 16

30455 hannover

22761 hamburg